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The electrophoretic velocity of a gas bubble is difficult to measure, since we must also 
contend with velocities due to buoyancy. One way to avoid this problem is to spin 
the electrophoretic cell about a horizontal axis. Centrifugal forces keep the bubble 
on the centreline of the cell. The price to be paid is the creation of Taylor columns 
which alter the hydrodynamic drag on the bubble. 

Here we modify two analyses by Moore & Saffman (1968, 1969) to include electrical 
effects. Motion of the body is assumed to be slow and steady, and the Ekman number 
small. The electrical double-layer thickness is small compared with the thickness of 
the Ekman layer. It is assumed that the presence of surfactants makes the gas-water 
interface rigid, and a no-slip boundary condition is applied. 

We predict that the electrophoretic velocity U should be proportional to 
eE@o(ap)-l  ( u / Q ) t ,  where E is the applied electric field, e the permittivity of the 
suspending fluid, the 6 potential at the surface of the bubble, a the bubble radius, 
p the fluid viscosity, v the kinematic viscosity and 52 the rate of rotation. There is 
reasonable agreement with some, but not all, published experimental results. 

1. Introduction 
Figure 1 shows an (idealized) electrophoretic cell. Usually we measure the 

electrophoretic velocities of particles which are small, and which have a density 
similar to that of the suspending fluid. Sedimentation is therefore not a problem. 
A large gas bubble, however, will quickly move towards the upper wall of the cell. 
One way to overcome this is to rotate the entire cell, as is done in the spinning-drop 
interfacial tensiometer. Experiments are reported by McTaggart (1914), Alty (1924), 
Whybrew, Kinzer & Gunn (1952), Huddleston (1974), Huddleston & Smith (1975), 
and McShea & Callaghan (1983). Other techniques have also been adopted - we draw 
the reader’s attention to Collins, Motarjemi & Jameson (1978). 

We assume that both the Rossby number U/aQ and the Ekman number l? = u/a29 
are small, where U is the electrophoretic velocity, a the radius of the bubble, u the 
kinematic viscosity and 52 the angular velocity of the rotating cell. (We reserve the 
symbol E for the strength of the applied electric field.) Taylor columns will be 
established in front of, and behind, the bubble. These modify the hydrodynamic forces 
on the bubble, rendering invalid the usual Smoluchowski analysis for electrophoresis 
with thin electrical double layers. We therefore modify analyses by Moore & Saffman 
(1968, 1969) to include electrical effects. Two cases will be considered, corresponding 
to an electrophoretic cell which is either short or long compared with the length of 
the Taylor column. Gas bubbles rising through water under buoyancy collect 
contaminants on their surface, and, at a radius < 0.1 mm, rise with the velocity 
corresponding to a no-slip boundary condition (Levich 1962). We shall assume that 
this condition holds throughout our analysis. We shall also assume that surface 
tension is sufficiently strong to hold the bubble spherical, with radius a. 
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FIGURE 1. The rohting electrophoretic cell. 

< 1 implies that  Ekman layers will develop on the surface of the body (see 
figure 1). Taking v = lop6 m2 s-l and 52 = 100 s-l gives an Ekman-layer thickness 
A-' = ( v /Q) t  = m compared with a typical value for a of 10-4-10-3 m. At lower 
angular velocities, or for small particles, our assumption of thin Ekman layers will 
become poor. 

The charged sphere will be surrounded by an electric charge cloud of counter-ions. 
The thickness of the cloud is given by the Debye length 

where ni are ionic number densities and zt the corresponding valencies. E is the 
permittivity of the suspending fluid, e the electronic charge and kT the Boltzmann 
factor. At an  ionic strength of lop6 moles/litre, we obtain K - ~  = 3 x lo-' m for a 1-1 
electrolyte, and the Debye length will be smaller still at higher ionic strengths. Thus 
it is clear that the electrical double layer lies well within the Ekman layer, and may 
be assumed thin and plane. Thus at low potentials the charge density po in the cloud 
is po = - C K ~ $ ~  e-'%, 

where z = 0 is the charged surface and $o is the 5 potential a t  the surface. 

1.1. Electrical Ekman layers 
It is straightforward to modify the standard analysis of an Ekman layer to include 
electrical stresses. Let (u, v, 0) be velocities in the (z, y, 2)-directions, with u = v = 0 
on the solid surface z = 0, and (u, I ) )  + ( U ,  0) as z+ co. The rotation 52 is along the 
z-direction. The electrical force on the fluid Ep, has magnitude E ~ K ~ I + ~ - ,  epKZ in the 
y-direction. If p (without the subscript 0) is the fluid density, and p = pv is the fluid 
viscosity, the equations for steady motion become 

d2u d2v 
2uQ = 2Uf2+E~~~!,h~e- '~p- '+v-  

dz2 dz2 ' 
-2~52 = v-, 

with solution 

u- U+iv = - UepAz(coshz-i sinhz) 

EcK~$,( 1 - vi~~/252)  
(e-Kz-eAZ (cos hz-i sinhz)). 

+ 2p52( 1 -k V2K4/4a2) 



Electrophoresis of gas bubbles in  a rotating jluid 131 

Thus 

which has been simplified by our assumption K $ A. Thus the flux within the Ekman 
layer consists of the standard hydrodynamic flux, together with an electrical term. 

We assume that there is no flux of ions into or out of the surface of the bubble. 
Since the electrical double layer has a small capacity at low potentials, the imposed 
electric field is that around a perfect insulator and, in spherical polar coordinates, 
the potential @ is @ = - E ( r + + V 2 )  cos 6. 

Thus the tangential component of the electric field at the bubble surface is 

E, = - i E  sine. 

We follow the notation of Moore & Saffman (1968) and henceforth use cylindrical 
polar coordinates (r, 6, z )  with Oz parallel to the axis of rotation and thus to the 
electric field. We assume that the equation of the particle surface is z = + f ( r ) ,  
0 6 r 6 a, where, for our sphere, z = a- (a2-r2)k The rate of rotation normal to the 
surface becomes Q( 1 +f2)-k  

Figure 1 shows the geometry to be considered. The multilayer structure of the 
shear layer between the Taylor column and the outer fluid has been considered by 
Stewartson (1966) and by Moore & Saffman (1969), who show that there is an inner 
layer of thickness a& and two outer layers of thickness ai8 and a B .  In $ 2 we show 
that this structure is not modified by the presence of electrical forces. In figure 1 the 
Taylor column is depicted long compared with the length h of the electrophoretic cell. 
This is the case considered by Moore & Saffman (1968) and will be considered in $2. 
For this analysis to hold, we require that h should be large compared with the 
Ekman-layer thickness. The width of the shear layer (which for the + layer can be 
shown to be O((h/a)$aB))  should also be small compared with a, and these two 
conditions lead to 

When h B a k l  the Taylor column is damped out by viscosity before it reaches the 
ends of the cell, and the bubble moves as in an unbounded fluid. This case was studied 
by (amongst others) Moore & Saffman (1969), and we examine it in $3. While we have 
thus considered the effect of the end walls of the electrophoretic cell, we shall neglect 
the presence of the side walls. In a standard cell, the electrical double layers at these 
walls produce motion of the fluid in the cell, which cannot be ignored. Rotation of 
the cell will suppress both these fluid velocities and the motion of the bubble: a 
separate study would be needed to consider these electro-osmotic velocities and will 
not be attempted here. We note simply that Huddleston (1974) usually performed 
experiments in a cell made of borosilicate glass, with negatively charged walls. 
Coating the walls with a cationic silane, trimethoxysilylpropyl trimethyl ammonium 
chloride, reversed the charge on the walls of the cell and thus reversed the direction 
of the electro-osmotic flow. The measured electrophoretic velocity of a gas bubble, 
however, remained unchanged, indicating that the electro-osmotic velocities were 
negligible. 

Finally in $4 we discuss the degree of agreement between theory and published 
experimental results. 


